Content area

Abstract

In the aluminum electrolysis production workshop, heavy-load overhead cranes equipped with multi-functional operation terminals are responsible for critical tasks such as anode replacement, shell breaking, slag removal, and material feeding. The real-time monitoring of these four types of operation terminals is of the utmost importance for ensuring production safety. High-resolution cameras are used to capture dynamic scenes of operation. However, the terminals undergo morphological changes and rotations in three-dimensional space according to task requirements during operations, lacking rotational invariance. This factor complicates the detection and recognition of multi-form targets in 3D environment. Additionally, operations like striking and material feeding generate significant dust, often visually obscuring the terminal targets. The challenge of real-time multi-form object detection in high-resolution images affected by smoke and dust environments demands detection and dehazing algorithms. To address these issues, we propose the YOLOv8n-Al-Dehazing method, which achieves the precise detection of multi-functional material handling terminals in aluminum electrolysis workshops. To overcome the heavy computational costs associated with processing high-resolution images by using YOLOv8n, our method refines YOLOv8n through component substitution and integrates real-time dehazing preprocessing for high-resolution images, thereby reducing the image processing time. We collected on-site data to construct a dataset for experimental validation. Compared with the YOLOv8n method, our method approach increases inference speed by 15.54%, achieving 120.4 frames per second, which meets the requirements for real-time detection on site. Furthermore, compared with state-of-the-art detection methods and variants of YOLO, YOLOv8n-Al-Dehazing demonstrates superior performance, attaining an accuracy rate of 91.0%.

Details

1009240
Title
YOLOv8n-Al-Dehazing: A Robust Multi-Functional Operation Terminals Detection for Large Crane in Metallurgical Complex Dust Environment
Publication title
Volume
16
Issue
3
First page
229
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
e-ISSN
20782489
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-03-15
Milestone dates
2025-01-02 (Received); 2025-03-13 (Accepted)
Publication history
 
 
   First posting date
15 Mar 2025
ProQuest document ID
3181516532
Document URL
https://www.proquest.com/scholarly-journals/yolov8n-al-dehazing-robust-multi-functional/docview/3181516532/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-03-27
Database
ProQuest One Academic