Content area

Abstract

A hybrid computational framework integrating the finite volume method (FVM) and finite difference method (FDM) is developed to solve two-dimensional, time-dependent nonlinear coupled Boussinesq-type equations (NCBTEs) based on Nwogu’s depth-integrated formulation. This approach models nonlinear dispersive wave forces acting on a stationary vessel and incorporates a frequency dispersion term to represent ship-wave generation due to a localized moving pressure disturbance. The computational domain is divided into two distinct regions: an inner domain surrounding the ship and an outer domain representing wave propagation. The inner domain is governed by the three-dimensional Laplace equation, accounting for the region beneath the ship and the confined space between the ship’s right side and a vertical quay wall. Conversely, the outer domain follows Nwogu’s 2D depth-integrated NCBTEs to describe water wave dynamics. Interface conditions are applied to ensure continuity by enforcing the conservation of volume flux and surface elevation matching between the two regions. The accuracy of this coupled numerical scheme is verified through convergence analysis, and its validity is established by comparing the simulation results with prior studies. Numerical experiments demonstrate the model’s capability to capture wave responses to simplified pressure disturbances and simulate wave propagation over intricate bathymetry. This computational framework offers an efficient and robust tool for analyzing nonlinear wave interactions with stationary ships or harbor structures. The methodology is specifically applied to examine the response of moored vessels to incident waves within Paradip Port, Odisha, India.

Details

1009240
Business indexing term
Title
Mathematical Modeling of Two-Dimensional Depth Integrated Nonlinear Coupled Boussinesq-Type Equations for Shallow-Water Waves with Ship-Born Generation Waves in Coastal Regions
Author
Vinita  VIAFID ORCID Logo  ; Kumar, Prashant  VIAFID ORCID Logo 
Volume
13
Issue
3
First page
562
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
20771312
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-03-13
Milestone dates
2025-02-09 (Received); 2025-03-11 (Accepted)
Publication history
 
 
   First posting date
13 Mar 2025
ProQuest document ID
3181550930
Document URL
https://www.proquest.com/scholarly-journals/mathematical-modeling-two-dimensional-depth/docview/3181550930/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-03-27
Database
ProQuest One Academic