Content area
Urban happiness prediction presents a complex challenge, due to the nonlinear and multifaceted relationships among socio-economic, environmental, and infrastructural factors. This study introduces an advanced hybrid model combining a gradient boosting machine (GBM) and neural network (NN) to address these complexities. Unlike traditional approaches, this hybrid leverages a GBM to handle structured data features and an NN to extract deeper nonlinear relationships. The model was evaluated against various baseline machine learning and deep learning models, including a random forest, CNN, LSTM, CatBoost, and TabNet, using metrics such as RMSE, MAE, R2, and MAPE. The GBM + NN hybrid achieved superior performance, with the lowest RMSE of 0.3332, an R2 of 0.9673, and an MAPE of 7.0082%. The model also revealed significant insights into urban indicators, such as a 10% improvement in air quality correlating to a 5% increase in happiness. These findings underscore the potential of hybrid models in urban analytics, offering both predictive accuracy and actionable insights for urban planners.
Details
; Liu, Alan 2
1 Department of Information Systems, Atma Jaya Catholic University of Indonesia, Jakarta 12930, Indonesia;
2 Department of Electrical Engineering, National Chung Cheng University, Chiayi 621301, Taiwan