Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Modulation format identification (MFI) is one of the most critical functions embedded in digital coherent receivers in elastic optical networks (EONs). In view of inherent amplitude and phase characteristics of received signals, different modulation formats exhibit a set of notable features in the polar coordinate system, based on which an MFI scheme incorporating the Gaussian weighted k-nearest neighbors (KNN) algorithm was proposed to identify polarization division multiplexed (PDM)-QPSK/-16QAM/-32QAM/-64QAM/-128QAM signals. The performance of the proposed scheme was numerically verified in 28GBaud coherent optical communication systems. The numerical simulation results show that, to achieve 100% correct identification rates for all of the five modulation formats, the required minimum optical signal-to-noise ratios (OSNRs) were less than their relevant thresholds corresponding to the 20% forward error correction (FEC). The tolerable ranges of the residual chromatic dispersion (CD) for QPSK, 16QAM, 32QAM, 64QAM, and 128QAM were −1920 ps/nm~1920 ps/nm, −720 ps/nm~360 ps/nm, −1200 ps/nm~1680 ps/nm, −600 ps/nm~360 ps/nm, and −600 ps/nm~480 ps/nm, respectively. Meanwhile, the results demonstrate the maximum tolerable differential-group delay (DGD) for the QPSK, 16QAM, 32QAM, 64QAM, and 128QAM signals were 34 ps, 16 ps, 20 ps, 6 ps, and 1.2 ps, respectively. In addition, the simulated results also show that the proposed MFI scheme is robust against the fiber nonlinearities, even if the launch power is increased to 4 dBm.

Details

Title
Modulation Format Identification Utilizing Polar-Coordinate-System-Based Features for Digital Coherent Receivers
Author
Liang, Shuai 1 ; Hao, Ming 2 ; Xiao, Ruyue 1 ; Liang, Shuang 1 ; Jin, Wei 3   VIAFID ORCID Logo  ; Chen, Lin 4   VIAFID ORCID Logo  ; Tang, Jianming 3   VIAFID ORCID Logo 

 School of Automation and Information Engineering, Sichuan University of Science and Engineering, Yibin 644000, China 
 School of Automation and Information Engineering, Sichuan University of Science and Engineering, Yibin 644000, China; Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Yibin 644000, China 
 The DSP Centre of Excellence, School of Computer Science and Electronic Engineering, Bangor University, Bangor LL57 1UT, UK 
 College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai 200090, China 
First page
190
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
23046732
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3181667848
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.