Content area

Abstract

To address the nonlinear state estimation problem, the generalized conversion filter (GCF) is proposed using a general conversion of the measurement under minimum mean square error (MMSE) criterion. However, the performance of the GCF significantly deteriorates in the presence of complex non-Gaussian noise as the symmetry of the MMSE is compromised, leading to performance degradation. To address this issue, this paper proposes a new GCF, named generalized loss-based GCF (GLGCF) by utilizing the generalized loss (GL) as the loss function instead of the MMSE criterion. In contrast to other robust loss functions, the GL adjusts the shape of the function through the shape parameter, allowing it to adapt to various complex noise environments. Meanwhile, a linear regression model is developed to obtain residual vectors, and the negative log-likelihood of GL is introduced to avoid the problem of manually selecting the shape parameter. The proposed GLGCF not only retains the advantage of GCF in handling strong measurement nonlinearity, but also exhibits robust performance against non-Gaussian noises. Finally, simulations on the target-tracking problem validate the strong robustness and high filtering accuracy of the proposed nonlinear state estimation algorithm in the presence of non-Gaussian noise.

Details

1009240
Title
Robust Generalized Loss-Based Nonlinear Filtering with Generalized Conversion
Publication title
Symmetry; Basel
Volume
17
Issue
3
First page
334
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
20738994
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-02-22
Milestone dates
2025-01-10 (Received); 2025-02-21 (Accepted)
Publication history
 
 
   First posting date
22 Feb 2025
ProQuest document ID
3181704546
Document URL
https://www.proquest.com/scholarly-journals/robust-generalized-loss-based-nonlinear-filtering/docview/3181704546/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-03-27
Database
ProQuest One Academic