Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The increasing penetration of renewable energy sources (RESs) into medium-voltage (MV) and low-voltage (LV) power systems presents significant challenges in ensuring power grid stability and energy sustainability. Advanced power conversion technologies are essential to mitigate voltage and frequency fluctuations while meeting stringent power quality standards. RES-based generation systems typically employ multistage power electronics to achieve: (i) maximum power point tracking; (ii) galvanic isolation and voltage transformation; (iii) high-quality power injection into the power grid. In this context, this paper provides a comprehensive review of up-to-date isolated DC–DC converter topologies tailored for the integration of RES. As a contribution to support this topic, recent advancements in solid-state transformers (SSTs) are explored, with particular emphasis on the adoption of wide bandgap (WBG) semiconductors technologies, such as silicon carbide (SiC) and gallium nitride (GaN). These devices have revolutionized modern power systems by enabling operation at a higher switching frequency, enhanced efficiency, and increased power density. By consolidating state-of-the-art advancements and identifying technical challenges, this review offers insights into the suitability of power converter topologies in light of future trends, serving as a valuable resource for optimizing grid-connected RES-based sustainable power systems.

Details

Title
Topological Advances in Isolated DC–DC Converters: High-Efficiency Design for Renewable Energy Integration
Author
Coelho, Sergio  VIAFID ORCID Logo  ; Monteiro, Vitor  VIAFID ORCID Logo  ; Afonso, Joao L  VIAFID ORCID Logo 
First page
2336
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3181748015
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.