Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper presents an automated procedure for optimizing datasets used in land/water segmentation tasks with deep learning models. The proposed method employs the Normalized Difference Water Index (NDWI) with a variable threshold to automatically assess the quality of annotations associated with multispectral satellite images. By systematically identifying and excluding low-quality samples, the method enhances dataset quality and improves model performance. Experimental results on two different publicly available datasets—the SWED and SNOWED—demonstrate that deep learning models trained on optimized datasets outperform those trained on baseline datasets, achieving significant improvements in segmentation accuracy, with up to a 10% increase in mean intersection over union, despite a reduced dataset size. Therefore, the presented methodology is a promising scalable solution for improving the quality of datasets for environmental monitoring and other remote sensing applications.

Details

Title
Optimizing Satellite Imagery Datasets for Enhanced Land/Water Segmentation
Author
Scarpetta, Marco  VIAFID ORCID Logo  ; De Palma, Luisa  VIAFID ORCID Logo  ; Attilio Di Nisio  VIAFID ORCID Logo  ; Spadavecchia, Maurizio  VIAFID ORCID Logo  ; Affuso, Paolo; Giaquinto, Nicola  VIAFID ORCID Logo 
First page
1793
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3181757308
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.