Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study categorizes pollutant-induced inflammation–cancer transition into three stages: non-alcoholic fatty liver disease (NAFLD), liver fibrosis, and hepatocellular carcinoma (HCC). It systematically reveals the temporal heterogeneity of pollutant-induced liver damage. The findings indicate that pollutants not only directly damage hepatocytes but also modulate key cells in the immune microenvironment, such as hepatic stellate cells (HSCs) and Kupffer cells, thereby amplifying inflammatory and fibrotic responses, ultimately accelerating the progression of HCC. Mechanistically, in the early stage (NAFLD), pollutants primarily cause hepatocyte injury through oxidative stress and lipid metabolism dysregulation. During the fibrosis stage, pollutants promote liver fibrosis by inducing extracellular matrix accumulation, while in the HCC stage, they drive tumorigenesis via activation of the Wnt/β-catenin pathway and p53 inactivation. Through multi-omics analyses, this study identifies critical pathogenic molecules and signaling pathways regulated by pollutants, providing new insights into their pathogenic mechanisms, potential biomarkers, and therapeutic targets. These findings offer valuable guidance for the development of diagnostic and therapeutic strategies for liver diseases and the formulation of environmental health risk prevention measures.

Details

Title
Pollutants in Microenvironmental Cellular Interactions During Liver Inflammation Cancer Transition and the Application of Multi-Omics Analysis
Author
Yulun Jian  VIAFID ORCID Logo  ; Li, Yuhan; Zhou, Yanfeng; Mu, Wei  VIAFID ORCID Logo 
First page
163
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
23056304
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3181822344
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.