It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We present a method capable of detecting potentially anomalous cosmic particle tracks acquired with complementary metal-oxide-semiconductor (CMOS) sensors. We apply a principal components analysis-based feature extraction method and rough k-means clustering for outlier detection. We evaluated our approach on more than 104 images acquired by the Cosmic Ray Extremely Distributed Observatory (CREDO). The method presented in this work proved to be an effective solution. The analysis of the behavior of the rough k-means clustering-based algorithm presented here and the method of selecting its parameters showed that the algorithm performs as expected and demonstrates efficiency, stability, and repeatability of results for the test data set. The results included in this work are very relevant to the international CREDO project and the broader problem of anomaly analysis in image data sets. We plan to deploy the presented methodology in the image processing pipeline of the large data set we are working on in the CREDO project. The results can be reproduced using our source code, which is published in an open repository.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Krakow Al. Mickiewicza 30, 30-059 Krakow, Poland





