It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The position-dependent feature in current vat photopolymerization-based additive manufacturing leads to challenges in controlling the dimensional accuracy of printed components. To overcome this intrinsic limitation, we propose a time-dependent dynamic laser writing (DLW) approach for the precise volumetric printing of complex-shaped lenses. In the DLW-based volumetric printing, the formed surface is generated by accumulating the material growth functions (MGFs) on the scanning path, where the MGF is created by the laser direct irradiation with controlled energy doses. Benefiting from the stability of MGFs and the process homogenization, the DLW is less sensitive to process errors when compared to current vat photopolymerization-based additive manufacturing techniques. Furthermore, the continuous scanning leads to the naturally ultra-smooth feature of the printed surfaces. As a demonstration, a millimeter-scale spherical lens was printed in 5.67 min, achieving a three-dimensional (3D) form error of 0.135 μm (root mean square, RMS) and a surface roughness of 0.31 nm (RMS). The printing demonstrated comparable efficiency while achieving form errors an order of magnitude smaller than those of state-of-the-art continuous layer-wise and volumetric printing methods. In addition, polymer lens arrays, freeform polymer lenses, and fused silica lenses were successfully printed, demonstrating promise for advancing the state-of-the-art in 3D printing of precision lenses.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 School of Mechanical Engineering, Nanjing University of Science and Technology , Nanjing 210094, People’s Republic of China
2 State Key Laboratory in Ultra-Precision Machining Technology, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University , Kowloon, Hong Kong SAR, People’s Republic of China
3 State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University , Shanghai 200240, People’s Republic of China