Abstract

Background

The cytological diagnostic process of EUS-FNA smears is time-consuming and manpower-intensive, and the conclusion could be subjective and controversial. Moreover, the relative lack of cytopathologists has limited the widespread implementation of Rapid on-site evaluation (ROSE) presently. Therefore, this study aimed to establish an AI system for the detection of pancreatic ductal adenocarcinoma (PDAC) based on EUS-FNA cytological images.

Methods

We collected 3213 unified magnification images of pancreatic cell clusters from 210 pancreatic mass patients who underwent EUS-FNA in four hospitals. A semi-supervised CNN (SSCNN) system was developed to distinguish PDAC from Non-PDAC. The internal and external verifications were adopted and the diagnostic accuracy was compared between different seniorities of cytopathologists. 33 images of “Atypical” diagnosed by expert cytopathologists were selected to analyze the consistency between the system and definitive diagnosis.

Results

The segmentation indicators Mean Intersection over Union (mIou), precision, recall and F1-score of SSCNN in internal and external testing sets were 88.3%, 93.21%,94.24%, 93.68% and 87.75%, 93.81%, 93.14%, 93.48% successively. The PDAC classification indicators of the SSCNN model including area under the ROC curve (AUC), accuracy, sensitivity, specificity, PPV and NPV in the internal testing set were 0.97%, 0.95%, 0.94%, 0.97%, 0.98%, 0.91% respectively, and 0.99%, 0.94%, 0.94%, 0.95%, 0.99%, 0.75% correspondingly in the external testing set. The diagnostic accuracy of senior, intermediate and junior cytopathologists was 95.00%, 88.33% and 76.67% under the binary diagnostic criteria of PDAC and non-PDAC. In comparison, the accuracy of the SSCNN system was 90.00% in the dataset of man-machine competition. The accuracy of the SSCNN model was highly consistent with senior cytopathologists (Kappa = 0.853, P = 0.001). The accuracy, sensitivity and specificity of the system in the classification of “atypical” cases were 78.79%, 84.20% and 71.43% respectively.

Conclusion

Not merely tremendous preparatory work was drastically reduced, the semi-supervised CNN model could effectively identify PDAC cell clusters in EUS-FNA cytological smears which achieved analogically diagnostic capability compared with senior cytopathologists, and showed outstanding performance in assisting to categorize “atypical” cases where manual diagnosis is controversial.

Trial registration

This study was registered on clinicaltrials.gov, and its unique Protocol ID was PJ-2018-12-17.

Details

Title
A semi-supervised convolutional neural network for diagnosis of pancreatic ductal adenocarcinoma based on EUS-FNA cytological images
Author
Fang, Dong; Huang, Yigeng; Li, Suwen; Chen, Shi; Bao, Junjun; Du, Dandan; Xuan, Lanlan; Ye, Leping; Zhang, Yanping; Zhu, ChengLin; Zheng, Hailun; Shi, Zhenwang; Qiao Mei; Wang, Huanqin
Pages
1-11
Section
Research
Publication year
2025
Publication date
2025
Publisher
BioMed Central
e-ISSN
14712407
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3187549665
Copyright
© 2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.