It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has varied presentations from asymptomatic to death. Efforts to identify factors responsible for differential COVID-19 severity include but are not limited to genome wide association studies (GWAS) and transcriptomic analysis. More recently, variability in host epigenomic profiles have garnered attention, providing links to disease severity. However, whole epigenome analysis of the respiratory tract, the target tissue of SARS-CoV-2, remains ill-defined.
Results
We interrogated the nasal methylome to identify pathophysiologic drivers in COVID-19 severity through whole genome bisulfite sequencing (WGBS) of nasal samples from COVID-19 positive individuals with severe and mild presentation of disease. We noted differential DNA methylation in intergenic regions and low methylated regions (LMRs), demonstrating the importance of distal regulatory elements in gene regulation in COVID-19 illness. Additionally, we demonstrated differential methylation of pathways implicated in immune cell recruitment and function, and the inflammatory response. We found significant hypermethylation of the FUT4 promoter implicating impaired neutrophil adhesion in severe disease. We also identified hypermethylation of ELF5 binding sites suggesting downregulation of ELF5 targets in the nasal cavity as a factor in COVID-19 phenotypic variability.
Conclusions
This study demonstrated DNA methylation as a marker of the immune response to SARS-CoV-2 infection, with enhancer-like elements playing significant roles. It is difficult to discern whether this differential methylation is a predisposing factor to severe COVID-19, or if methylation differences occur in response to disease severity. These differences in the nasal methylome may contribute to disease severity, or conversely, the nasal immune system may respond to severe infection through differential immune cell recruitment and immune function, and through differential regulation of the inflammatory response.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer