It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Protein folding remains a fundamental challenge in molecular biology, particularly in understanding how polypeptide chains transition from denatured states to their functional conformations. Here we analyze the folding mechanisms of the engineered metamorphic proteins B4 and Sb3, which share highly similar sequences but adopt distinct topologies. Kinetic analyses revealed that B4 follows a two-state folding mechanism, whereas Sb3 involves the formation of an intermediate species. We further explore the role of topology in folding commitment using the metamorphic mutant Sb4, which can populate both conformations. By analyzing folding and unfolding behaviors under varying experimental conditions, our findings suggest that topology dictates folding mechanisms at an early stage. These results demonstrate that folding landscapes are primarily shaped by final native structures rather than sequence composition.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer