Content area

Abstract

Rapid urbanization and environmental challenges necessitate innovative construction solutions in Egypt. This study presents a 6D Green Building Information Modeling (BIM) framework designed to enhance sustainability, reduce costs, and optimize construction processes. Integrating energy consumption, carbon footprint, and lifecycle performance metrics, the framework addresses critical gaps in Egypt’s construction sector, including limited technical expertise, high costs, and regulatory challenges. A mixed-methods approach was employed, combining global case study analysis, 3D modeling using Autodesk Revit, energy simulations with Autodesk Insight, and project scheduling through Primavera P6. Expert interviews with industry professionals further refined and validated the framework, ensuring its practicality and adaptability to Egypt’s unique socio-economic context. Key findings highlight the framework’s ability to reduce project costs through accurate 3D models, improve scheduling efficiency with 4D and 5D simulations, and enhance sustainability with 6D analyses of energy, water, and photovoltaic systems. The framework not only supports Egypt Vision 2030’s sustainability goals but also provides a clear, step-by-step implementation process using widely adopted tools. This research contributes a comprehensive, scalable model for sustainable construction, offering practical solutions to industry stakeholders. Its adaptable nature makes it relevant for other developing countries facing similar challenges, positioning BIM as a transformative tool for achieving greener, more efficient construction practices.

Details

1009240
Business indexing term
Company / organization
Title
Green Building Information Modeling Framework for Sustainable Residential Development in Egypt
Publication title
Buildings; Basel
Volume
15
Issue
7
First page
1035
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
20755309
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-03-24
Milestone dates
2025-01-20 (Received); 2025-02-27 (Accepted)
Publication history
 
 
   First posting date
24 Mar 2025
ProQuest document ID
3188778530
Document URL
https://www.proquest.com/scholarly-journals/green-building-information-modeling-framework/docview/3188778530/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-04-11
Database
ProQuest One Academic