Content area

Abstract

To enhance the forming accuracy of circular rolling, this paper proposes a control strategy for compensating the springback of sheet metals by altering the rolling angle. A kinematic model for circular rolling springback compensation is established to monitor the forming radian of the sheet metal in real time. The motor is then controlled to adjust the rolling angle of the sheet metal through a mechanical structure, thereby achieving springback compensation. To realize the precise control required by the springback compensation control strategy, a fuzzy PID controller strategy optimized by the coupled whale particle (CWP) algorithm is designed. The research results indicate that the error between the formed radius and the desired radius in a normal circular rolling experiment is 5.4%, 5.32%, and 5.52%. However, after applying the springback compensation strategy, the error in the circular rolling experiment is reduced to 1.6%, 1.55%, and 1.72%. This demonstrates that the proposed springback compensation strategy for circular rolling effectively improves the accuracy of circular rolling.

Details

1009240
Title
Research on Springback Compensation Method of Roll Forming Based on Improved Fuzzy PID Control
Publication title
Volume
15
Issue
7
First page
3748
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-03-29
Milestone dates
2025-01-22 (Received); 2025-03-27 (Accepted)
Publication history
 
 
   First posting date
29 Mar 2025
ProQuest document ID
3188788873
Document URL
https://www.proquest.com/scholarly-journals/research-on-springback-compensation-method-roll/docview/3188788873/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-04-11
Database
ProQuest One Academic