Content area

Abstract

This research aims to investigate the roles of ontology and Semantic Web Technologies (SWT) in modern knowledge representation and data management. By analyzing a dataset of 10,037 academic articles from Web of Science (WoS) published in the last 6 years (2019–2024) across several fields, such as computer science, engineering, and telecommunications, our research identifies important trends in the use of ontologies and semantic frameworks. Through bibliometric and semantic analyses, Natural Language Processing (NLP), and topic modeling using Latent Dirichlet Allocation (LDA) and BERT-clustering approach, we map the evolution of semantic technologies, revealing core research themes such as ontology engineering, knowledge graphs, and linked data. Furthermore, we address existing research gaps, including challenges in the semantic web, dynamic ontology updates, and scalability in Big Data environments. By synthesizing insights from the literature, our research provides an overview of the current state of semantic web research and its prospects. With a 0.75 coherence score and perplexity = 48, the topic modeling analysis identifies three distinct thematic clusters: (1) Ontology-Driven Knowledge Representation and Intelligent Systems, which focuses on the use of ontologies for AI integration, machine interpretability, and structured knowledge representation; (2) Bioinformatics, Gene Expression and Biological Data Analysis, highlighting the role of ontologies and semantic frameworks in biomedical research, particularly in gene expression, protein interactions and biological network modeling; and (3) Advanced Bioinformatics, Systems Biology and Ethical-Legal Implications, addressing the intersection of biological data sciences with ethical, legal and regulatory challenges in emerging technologies. The clusters derived from BERT embeddings and clustering show thematic overlap with the LDA-derived topics but with some notable differences in emphasis and granularity. Our contributions extend beyond theoretical discussions, offering practical implications for enhancing data accessibility, semantic search, and automated knowledge discovery.

Details

1009240
Business indexing term
Title
Recent Trends and Insights in Semantic Web and Ontology-Driven Knowledge Representation Across Disciplines Using Topic Modeling
Publication title
Volume
14
Issue
7
First page
1313
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-03-26
Milestone dates
2025-02-28 (Received); 2025-03-25 (Accepted)
Publication history
 
 
   First posting date
26 Mar 2025
ProQuest document ID
3188812927
Document URL
https://www.proquest.com/scholarly-journals/recent-trends-insights-semantic-web-ontology/docview/3188812927/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-04-11
Database
ProQuest One Academic