Content area

Abstract

Partially nonlocal (PNL) variable-coefficient nonlinear Schrödinger equations (NLSEs) represent a significant area of study in mathematical physics and quantum mechanics, particularly in scenarios where potential and coefficients vary spatially or temporally. The (3+1)-dimensional partially nonlocal (PNL) coupled nonlinear Schrödinger (NLS) model, enriched with different values of two transverse diffraction profiles and subjected to gain or loss phenomena, undergoes dimensional reduction to a (2+1)-dimensional counterpart model, facilitated by a conversion relation. This reduction unveils intriguing insights into the excited mechanisms underlying partially nonlocal waves, culminating in analytical solutions that describe high-dimensional extreme waves characterized by Hermite–Gaussian envelopes. This paper explores novel extreme wave solutions in (3+1)-dimensional PNL systems, employing Hirota’s bilinearization method to derive analytical solutions for ring-like bright–bright vector two-component one-soliton solutions. This study examines the dynamic evolution of these solutions under varying dispersion and nonlinearity conditions and investigates the impact of gain and loss on their behavior. Furthermore, the shape of the obtained solitons is determined by the parameters s and q, while the Hermite parameters p and n modulate the formation of additional layers along the z-axis, represented by p+1 and n+1, respectively. Our findings address existing gaps in understanding extreme waves in partially nonlocal media and offer insights into managing these phenomena in practical systems, such as optical fibers. The results contribute to the theoretical framework of high-dimensional wave phenomena and provide a foundation for future research in wave dynamics and energy management in complex media.

Details

1009240
Title
Ring-like Bright Monster Waves in Variable-Coefficient Partially Nonlocal Coupled NLS Equations with Directional Diffraction and External Perturbations in (3+1)D
Author
Publication title
Volume
13
Issue
7
First page
1039
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-03-23
Milestone dates
2025-01-06 (Received); 2025-03-17 (Accepted)
Publication history
 
 
   First posting date
23 Mar 2025
ProQuest document ID
3188872317
Document URL
https://www.proquest.com/scholarly-journals/ring-like-bright-monster-waves-variable/docview/3188872317/se-2?accountid=208611
Copyright
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-04-11
Database
ProQuest One Academic