It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Pseudomonas aeruginosa is a clinically important pathogen implicated in many hospital-acquired infections. Its propensity to acquire broad-spectrum resistance has earned the organism its status as a severe public health threat requiring urgent control measures. While whole-genome sequencing-based genomic surveillance provides a means to track antimicrobial resistance, its use in molecular epidemiological surveys of P. aeruginosa remains limited, especially in the Southeast Asian region. We sequenced the whole genomes of 222 carbapenem-non-susceptible P. aeruginosa (CNPA) isolates collected in 2006–2020 at the largest public acute care hospital in Singapore. Antimicrobial susceptibilities were determined using broth microdilution. Clonal relatedness, multi-locus sequence types, and antimicrobial resistance determinants (acquired and chromosomal) were determined. In this study, CNPA exhibited broad-spectrum resistance (87.8% multi-drug resistance), retaining susceptibility only to polymyxin B (95.0%) and amikacin (55.0%). Carbapenemases were detected in 51.4% of the isolates, where IMP and NDM metallo-β-lactamases were the most frequent. Carbapenem resistance was also likely associated with OprD alterations or efflux mechanisms (ArmZ/NalD mutations), which occurred in strains with or without carbapenemases. The population of CNPA in the hospital was diverse; the 222 isolates grouped into 68 sequence types (ST), which included various high-risk clones. We detected an emerging clone, the NDM-1-producing ST308, in addition to the global high-risk ST235 clone which was the predominant clone in our population. Our results thus provide a “snapshot” of the circulating lineages of CNPA locally and the prevailing genetic mechanisms contributing to carbapenem resistance. This database also serves as the baseline for future prospective surveillance studies.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Department of Pharmacy, Singapore General Hospital, Singapore, Singapore; Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
2 Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
3 Department of Pharmacy, National University of Singapore, Singapore, Singapore
4 Department of Pharmacy, Singapore General Hospital, Singapore, Singapore
5 Department of Microbiology, Singapore General Hospital, Singapore, Singapore
6 Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore; Singhealth Duke-NUS Medicine Academic Clinical Programme, Singapore, Singapore
7 Department of Pharmacy, Singapore General Hospital, Singapore, Singapore; Singhealth Duke-NUS Medicine Academic Clinical Programme, Singapore, Singapore; Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore