It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We present two new tools for studying and modelling metal absorption lines in the circumgalactic medium. The first tool, dubbed ‘NMF Profile Maker’ (NMF–PM), uses a non-negative matrix factorization (NMF) method and provides a robust means to generate large libraries of realistic metal absorption profiles. The method is trained and tested on 650 unsaturated metal absorbers in the redshift interval z = 0.9–4.2 with column densities in the range of 11.2 ≤ log (N/cm−2) ≤ 16.3, obtained from high-resolution (R > 4000) and high-signal-to-noise ratio (S/N ≥ 10) quasar spectroscopy. To avoid spurious features, we train on infinite S/N Voigt models of the observed line profiles derived using the code ‘Monte-Carlo Absorption Line Fitter’ (MC–ALF), a novel automatic Bayesian fitting code that is the second tool we present in this work. MC–ALF is a Monte-Carlo code based on nested sampling that, without the need for any prior guess or human intervention, can decompose metal lines into individual Voigt components. Both MC–ALF and NMF–PM are made publicly available to allow the community to produce large libraries of synthetic metal profiles and to reconstruct Voigt models of absorption lines in an automatic fashion. Both tools contribute to the scientific effort of simulating and analysing metal absorbers in very large spectroscopic surveys of quasars like the ongoing Dark Energy Spectroscopic Instrument, the 4-m Multi-Object Spectroscopic Telescope, and the WHT Enhanced Area Velocity Explorer surveys.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details








1 Dipartimento di Fisica G. Occhialini, Università degli Studi di Milano-Bicocca , Piazza della Scienza 3, I-20126 Milano, Italy
2 Cineca , Via Magnanelli, 6/3, I-40033 Casalecchio di Reno (BO), Italy