It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
While machine coding of data has dramatically advanced in recent years, the literature raises significant concerns about validation of LLM classification showing, for example, that reliability varies greatly by prompt and temperature tuning, across subject areas and tasks—especially in “zero-shot” applications. This paper contributes to the discussion of validation in several different ways. To test the relative performance of supervised and semi-supervised algorithms when coding political data, we compare three models’ performances to each other over multiple iterations for each model and to trained expert coding of data. We also examine changes in performance resulting from prompt engineering and pre-processing of source data. To ameliorate concerns regarding LLM’s pre-training on test data, we assess performance by updating an existing dataset beyond what is publicly available. Overall, we find that only GPT-4 approaches trained expert coders when coding contexts familiar to human coders and codes more consistently across contexts. We conclude by discussing some benefits and drawbacks of machine coding moving forward.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details








1 Government and Politics, University of Maryland at College Park , College Park, MD , USA
2 Political Science, University of North Texas , Denton, TX , USA
3 Government, University of Texas at Austin , Austin, TX , USA
4 School of Politics and Global Studies, Arizona State University , Tempe, AZ , USA