It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In the framework of the uRANIA (u-Rwell Advanced Neutron Imaging Apparatus) project, we are developing innovative thermal neutron detectors based on resistive gaseous devices such as micro-Resistive WELL (μ-RWELL) and surface Resistive Plate Counter (sRPC).
The μ-RWELL is a single amplification stage resistive MPGD developed for HEP applications. The amplification stage, based on the same Apical® foil used for the manufacturing of the GEM, is embedded through a resistive layer in the readout board. The resistive layer is realized by sputtering the back side of the Apical® foil with DiamondLike-Carbon (DLC). A cathode electrode, defining the gas conversion/drift gap, completes the detector mechanics. The deposition of a thin layer of 10B4C on the cathode surface allows the thermal neutrons conversion into 7Li and α ions, which can be easily detected in the active volume of the device. Results from tests performed with different detector layouts show that a thermal neutron (25 meV) detection efficiency up to 7% can be achieved with a single detector. A comparison between experimental data and the simulation of the detector behaviour has been performed. In parallel, we are proposing the development of thermal neutron detectors based on a novel RPC concept. The sRPC is a revolutionary RPC based on surface resistive electrodes realized by exploiting the well-established DLC sputtering technology on thin (50µm) polyimide foils, the same used in the manufacturing of the µ-RWELL. The DLC foil is glued onto a 2 mm thick float-glass. The 2 mm gas gap between the electrodes is ensured by spacers made of Delrin®, inserted without gluing at the edges of the glass supports. By replacing DLC with 10B4C sputtered electrodes, the device becomes sensitive to thermal neutrons. Different layouts of 10B4C coated electrodes have been tested, allowing to achieve efficiency up to 6%. The robustness, ease of construction, and scalability of the sRPC technology should allow the construction of cost-effective large area detector units as required by applications in homeland security (such as Radiation Portal Monitor).
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer