Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper introduces an adaptive Incremental Nonlinear Dynamic Inversion (INDI) control methodology with guaranteed stability for a highly maneuverable unmanned aerial manipulator (UAM) designed to operate under demanding conditions, such as rapid arm movements and varying manipulated payloads. This work extends previous work on the control of aerial manipulators by addressing control effectiveness uncertainties. The stability bounds of the inertia matrix within the control effectiveness matrix are derived through a detailed eigenvalue analysis, ensuring that the eigenvalues consistently remain within a specified stability threshold. The proposed methodology ensures both stability and control responsiveness by dynamically adjusting the inertia parameters of the control effectiveness matrix within stability-guaranteeing limits. The methodology is validated through extensive simulation tests showing that the proposed adaptive INDI controller outperforms previous UAM controllers, effectively coping with disturbances caused by varying grasped payloads/masses and extended arm movements with guaranteed stability.

Details

Title
Adaptive Incremental Nonlinear Dynamic Inversion Control with Guaranteed Stability for Aerial Manipulators
Author
Park Chanhong  VIAFID ORCID Logo  ; Ramirez-Serrano, Alex  VIAFID ORCID Logo  ; Mahdis, Bisheban  VIAFID ORCID Logo 
First page
312
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
22264310
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3194484876
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.