Full text

Turn on search term navigation

© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper conducts an in-depth study on the outage probability performance of relay-based semantic communication systems and proposes a multi-mode intelligent relay design framework to address complex scenarios such as background knowledge differences, channel quality fluctuations, and computational limitations at the destination node. Based on a three-node two-hop communication model (source node–relay node–destination node) and integrating the DeepSC model, the study achieves cross-layer collaboration between semantic encoding/decoding and channel encoding/decoding. The proposed relay node operates in four innovative modes: semantic cooperative decode-and-forward, semantic adaptive forwarding, semantic-enhanced forwarding, and semantic-bit hybrid forwarding, each tailored to different levels of background knowledge matching, channel conditions, and computational constraints at the destination node. Through theoretical derivations, this paper presents the first closed-form expressions for the outage probability of the four relay modes, systematically quantifying the coupling effects of semantic symbol redundancy, background knowledge differences, and computational conversion efficiency on system reliability. The results show that semantic adaptive forwarding significantly reduces outage probability when background knowledge differences are minimal. When the destination node has limited computational power, the semantic-bit hybrid mode enhances communication reliability by flexibly adjusting the transmission strategy. Moreover, proper configuration of semantic symbol redundancy plays a crucial role in maintaining semantic information integrity and resisting channel interference. Monte Carlo simulations validate the theoretical analysis, demonstrating that the dynamic switching mechanism of the multi-mode relay outperforms single-mode strategies. This research provides theoretical support for reliable transmission and resource optimization in 6G semantic communication systems, uncovering the potential of joint optimization between semantic parameters and dynamic channel conditions. It holds significant implications for advancing future intelligent communication systems.

Details

Title
Outage Probability Analysis of Relay Communication Systems for Semantic Transmission
Author
Cui Yangyang  VIAFID ORCID Logo 
First page
1507
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3194570839
Copyright
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.