Content area

Abstract

Microgrids facilitate the complementary and collaborative operation of various distributed energy resources. Implementing effective day-ahead scheduling strategies can significantly enhance the economic efficiency and operational stability of microgrid systems. In this study, the long short-term memory (LSTM) neural network is first employed to forecast photovoltaic (PV) power generation and load demand, using operational data from a full-scale microgrid system. Subsequently, an optimization model for a full-scale PV–energy storage microgrid is developed, integrating a PV power generation system, a battery energy storage system, and a specific industrial load. The model aims to minimize the total daily operating cost of the system while satisfying a set of system operational constraints, with particular emphasis on the safety requirements for grid exchange power. The formulated optimization problem is then transformed into a mixed-integer linear programming (MILP) model, which is solved using a computational solver to derive the day-ahead economic scheduling scheme. Finally, the proposed scheduling scheme is validated through field experiments conducted on the full-scale PV–energy storage microgrid system across various operational scenarios. By comparing the simulation results with the experimental outcomes, the effectiveness and practicality of the proposed day-ahead economic scheduling scheme for the microgrid are demonstrated.

Details

1009240
Business indexing term
Title
Day-Ahead Optimal Scheduling for a Full-Scale PV–Energy Storage Microgrid: From Simulation to Experimental Validation
Author
Publication title
Volume
14
Issue
8
First page
1509
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-04-09
Milestone dates
2025-03-02 (Received); 2025-04-06 (Accepted)
Publication history
 
 
   First posting date
09 Apr 2025
ProQuest document ID
3194571311
Document URL
https://www.proquest.com/scholarly-journals/day-ahead-optimal-scheduling-full-scale-pv-energy/docview/3194571311/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-04-25
Database
ProQuest One Academic