Content area

Abstract

This paper presents the development and evaluation of a distributed system employing low-latency embedded field-programmable gate arrays (FPGAs) to optimize scheduling for deep learning (DL) workloads and to configure multiple deep learning accelerator (DLA) architectures. Aimed at advancing FPGA applications in real-time edge computing, this study focuses on achieving optimal latency for a distributed computing system. A novel methodology was adopted, using configurable hardware to examine clusters of DLAs, varying in architecture and scheduling techniques. The system demonstrated its capability to parallel-process diverse neural network (NN) models, manage compute graphs in a pipelined sequence, and allocate computational resources efficiently to intensive NN layers. We examined five configurable DLAs—Versatile Tensor Accelerator (VTA), Nvidia DLA (NVDLA), Xilinx Deep Processing Unit (DPU), Tensil Compute Unit (CU), and Pipelined Convolutional Neural Network (PipeCNN)—across two FPGA cluster types consisting of Zynq-7000 and Zynq UltraScale+ System-on-Chip (SoC) processors, respectively. Four deep neural network (DNN) workloads were tested: Scatter-Gather, AI Core Assignment, Pipeline Scheduling, and Fused Scheduling. These methods revealed an exponential decay in processing time up to 90% speedup, although deviations were noted depending on the workload and cluster configuration. This research substantiates FPGAs’ utility in adaptable, efficient DL deployment, setting a precedent for future experimental configurations and performance benchmarks.

Details

1009240
Business indexing term
Company / organization
Title
Deep Learning Scheduling on a Field-Programmable Gate Array Cluster Using Configurable Deep Learning Accelerators
Publication title
Volume
16
Issue
4
First page
298
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
e-ISSN
20782489
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-04-08
Milestone dates
2025-02-11 (Received); 2025-03-26 (Accepted)
Publication history
 
 
   First posting date
08 Apr 2025
ProQuest document ID
3194615459
Document URL
https://www.proquest.com/scholarly-journals/deep-learning-scheduling-on-field-programmable/docview/3194615459/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-05-02
Database
ProQuest One Academic