Content area

Abstract

In distributed machine learning, data shuffling is a crucial data preprocessing technique that significantly impacts the efficiency and performance of model training. As distributed machine learning scales across multiple computing nodes, the ability to shuffle data effectively and efficiently has become essential for achieving high-quality model performance and minimizing communication costs. This paper systematically explores various data shuffling methods, including random shuffling, stratified shuffling, K-fold shuffling, and coded shuffling, each with distinct advantages, limitations, and application scenarios. Random shuffling is simple and fast but may lead to imbalanced class distributions, while stratified shuffling maintains class proportions at the cost of increased complexity. K-fold shuffling provides robust model evaluation through multiple training-validation splits, though it is computationally demanding. Coded shuffling, on the other hand, optimizes communication costs in distributed settings but requires sophisticated encoding-decoding techniques. The study also highlights the challenges associated with current shuffling techniques, such as handling class imbalance, high computational complexity, and adapting to dynamic, real-time data. This paper proposes potential solutions to enhance the efficacy of data shuffling, including hybrid methodologies, automated stratification processes, and optimized coding strategies. This work aims to guide future research on data shuffling in distributed machine learning environments, ultimately advancing model robustness and generalization across complex real-world applications.

Details

1009240
Business indexing term
Title
Enhancing Distributed Machine Learning through Data Shuffling: Techniques, Challenges, and Implications
Publication title
Volume
73
Source details
International Workshop on Advanced Applications of Deep Learning in Image Processing (IWADI 2024)
Publication year
2025
Publication date
2025
Section
Blockchain, AI, and Technology Integration
Publisher
EDP Sciences
Place of publication
Les Ulis
Country of publication
France
ISSN
24317578
e-ISSN
22712097
Source type
Conference Paper
Language of publication
English
Document type
Conference Proceedings
Publication history
 
 
Online publication date
2025-02-17
Publication history
 
 
   First posting date
17 Feb 2025
ProQuest document ID
3194619533
Document URL
https://www.proquest.com/conference-papers-proceedings/enhancing-distributed-machine-learning-through/docview/3194619533/se-2?accountid=208611
Copyright
© 2025. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-04-25
Database
ProQuest One Academic