Content area

Abstract

To mitigate the three-dimensional (3D) coupling interference of electric field sensors, a novel MEMS 3D electric field sensor with a dual-orthogonal induction structure and its spatial decoupling method is proposed. The sensor is designed with a cylindrical structure, in which two pairs of induction electrodes are orthogonally arranged to suppress common-mode interference. MEMS electric field sensing chips are utilized to achieve 3D electric field measurement. Furthermore, a spatial decoupling calibration model is established based on the structural characteristics of the sensor. The Cramér–Rao lower bound of the linear model is calculated to obtain the optimal decoupled calibration matrix, enabling precise 3D electric field decoupling. Experimental results showed that within an electric field range of 0–50 kV/m, the linearity of the three decoupled electric field components was 2.60%, 1.20%, and 1.78%, respectively, while the synthesized electric field achieved a linearity of 0.74% with a maximum full-scale error of 0.80%. Under varying angles and field intensities, the maximum and average relative errors of the decoupled synthesized electric field were 1.20% and 0.43%, respectively, representing reductions of 61.8% and 56.1% compared to the conventional matrix inversion method. These results confirmed that the proposed method effectively suppressed coupling interference and enhanced 3D electric field measurement accuracy.

Details

1009240
Business indexing term
Title
Spatial Decoupling Method for a Novel Dual-Orthogonal Induction MEMS Three-Dimensional Electric Field Sensor
Author
Li, Jiacheng 1   VIAFID ORCID Logo  ; Wang, Junpeng 1 ; Peng Chunrong 1 ; Liu, Wenjie 1 ; Luo Jiahao 1 ; Wu, Zhengwei 2 ; Ren, Ren 2 ; Yao, Lv 2 

 State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; [email protected] (J.L.); [email protected] (J.W.); [email protected] (W.L.); [email protected] (J.L.); [email protected] (Z.W.); [email protected] (R.R.); [email protected] (Y.L.), University of Chinese Academy of Sciences, Beijing 100049, China 
 State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; [email protected] (J.L.); [email protected] (J.W.); [email protected] (W.L.); [email protected] (J.L.); [email protected] (Z.W.); [email protected] (R.R.); [email protected] (Y.L.) 
Publication title
Volume
16
Issue
4
First page
381
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
2072666X
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-03-27
Milestone dates
2025-02-21 (Received); 2025-03-25 (Accepted)
Publication history
 
 
   First posting date
27 Mar 2025
ProQuest document ID
3194625753
Document URL
https://www.proquest.com/scholarly-journals/spatial-decoupling-method-novel-dual-orthogonal/docview/3194625753/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-04-25
Database
ProQuest One Academic