Content area

Abstract

Periodically ordered arrays of vertically aligned Si nanowires (Si NWs) are successfully fabricated by nanosphere lithography combined with metal-assisted chemical etching. By adjusting the etching time, both the nanowires’ diameter and length can be well controlled. The conductive properties of such Si NWs and particularly their size dependence are investigated by conductive atomic force microscopy (CAFM) on individual nanowires. The results indicate that the conductance of Si NWs is greatly relevant to their diameter and length. Si NWs with smaller diameters and shorter lengths exhibit better conductive properties. Together with the I–V curve characterization, a possible mechanism is supposed with the viewpoint of size-dependent Schottky barrier height, which is further verified by the electrostatic force microscopy (EFM) measurements. This study also suggests that CAFM can act as an effective means to explore the size (or other parameters) dependence of conductive properties on individual nanostructures, which should be essential for both fabrication optimization and potential applications of nanostructures.

Details

Title
Investigating Size-Dependent Conductive Properties on Individual Si Nanowires
Pages
52
Publication year
2020
Publication date
Dec 2020
Publisher
Springer Nature B.V.
ISSN
19317573
e-ISSN
1556276X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3196707306
Copyright
Copyright Springer Nature B.V. Dec 2020