Content area

Abstract

A controllable transformation from interfacial to filamentary switching mode is presented on a ZrO2/ZrO2 − x/ZrO2 tri-layer resistive memory. The two switching modes are investigated with possible switching and transformation mechanisms proposed. Resistivity modulation of the ZrO2 − x layer is proposed to be responsible for the switching in the interfacial switching mode through injecting/retracting of oxygen ions. The switching is compliance-free due to the intrinsic series resistor by the filaments formed in the ZrO2 layers. By tuning the RESET voltages, controllable and stable multistate memory can be achieved which clearly points towards the capability of developing the next-generation multistate high-performance memory.

Details

Title
Compliance-Free ZrO2/ZrO2 − x/ZrO2 Resistive Memory with Controllable Interfacial Multistate Switching Behaviour
Pages
384
Publication year
2017
Publication date
Dec 2017
Publisher
Springer Nature B.V.
ISSN
19317573
e-ISSN
1556276X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3196722548
Copyright
Copyright Springer Nature B.V. Dec 2017