It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Age-related macular degeneration (AMD) ranks third among the most common causes of blindness. As the most conventional and direct method for identifying AMD, color fundus photography has become prominent owing to its consistency, ease of use, and good quality in extensive clinical practice. In this study, a convolutional neural network (CSPDarknet53) was combined with a transformer to construct a new hybrid model, HCSP-Net. This hybrid model was employed to tri-classify color fundus photography into the normal macula (NM), dry macular degeneration (DMD), and wet macular degeneration (WMD) based on clinical classification manifestations, thus identifying and resolving AMD as early as possible with color fundus photography. To further enhance the performance of this model, grouped convolution was introduced in this study without significantly increasing the number of parameters. HCSP-Net was validated using an independent test set. The average precision of HCSP-Net in the diagnosis of AMD was 99.2%, the recall rate was 98.2%, the F1-Score was 98.7%, the PPV (positive predictive value) was 99.2%, and the NPV (negative predictive value) was 99.6%. Moreover, a knowledge distillation approach was also adopted to develop a lightweight student network (SCSP-Net). The experimental results revealed a noteworthy enhancement in the accuracy of SCSP-Net, rising from 94% to 97%, while remarkably reducing the parameter count to a quarter of HCSP-Net. This attribute positions SCSP-Net as a highly suitable candidate for the deployment of resource-constrained devices, which may provide ophthalmologists with an efficient tool for diagnosing AMD.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer