It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Channel assignment has emerged as an essential study subject in Cognitive Radio-based Wireless Mesh Networks (CR-WMN). In an era of alarming increase in Multi-Radio Multi-Channel (MRMC) network expansion interference is decreased and network throughput is significantly increased when non-overlapping or partially overlapping channels are correctly integrated. Because of its ad hoc behavior, dynamic channel assignment outperforms static channel assignment. Interference reduces network throughput in the CR-WMN. As a result, there is an extensive research gap for an algorithm that dynamically distributes channels while accounting for all types of interference. This work presents a method for dynamic channel allocations using unsupervised Machine Learning (ML) that considers both coordinated and uncoordinated interference. Unsupervised machine learning uses coordinated and non-coordinated interference for dynamic channel allocation. To determine the applicability of the proposed strategy in reducing channel interference while increasing WMN throughput, a comparison analysis was performed. When the simulation results of our proposed algorithm are compared to those of the Routing Channel Assignment (RCA) algorithm, the throughput of our proposed algorithm has increased by 34% compared to both coordinated and non-coordinated interferences.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer