It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In this paper, the bifurcation properties of the vibro-impact systems with an uncertain parameter under the impulse and harmonic excitations are investigated. Firstly, by means of the orthogonal polynomial approximation (OPA) method, the nonlinear damping and stiffness are expanded into the linear combination of the state variable. The condition for the appearance of the vibro-impact phenomenon is to be transformed based on the calculation of the mean value. Afterwards, the stochastic vibro-impact system can be turned into an equivalent high-dimensional deterministic non-smooth system. Two different Poincaré sections are chosen to analyze the bifurcation properties and the impact numbers are identified for the periodic response. Consequently, the numerical results verify the effectiveness of the approximation method for analyzing the considered nonlinear system. Furthermore, the bifurcation properties of the system with an uncertain parameter are explored through the high-dimensional deterministic system. It can be found that the excitation frequency can induce period-doubling bifurcation and grazing bifurcation. Increasing the random intensity may result in a diffusion-based trajectory and the impact with the constraint plane, which induces the topological behavior of the non-smooth system to change drastically. It is also found that grazing bifurcation appears in advance with increasing of the random intensity. The stronger impulse force can result in the appearance of the diffusion phenomenon.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer