Abstract

In this paper, the bifurcation properties of the vibro-impact systems with an uncertain parameter under the impulse and harmonic excitations are investigated. Firstly, by means of the orthogonal polynomial approximation (OPA) method, the nonlinear damping and stiffness are expanded into the linear combination of the state variable. The condition for the appearance of the vibro-impact phenomenon is to be transformed based on the calculation of the mean value. Afterwards, the stochastic vibro-impact system can be turned into an equivalent high-dimensional deterministic non-smooth system. Two different Poincaré sections are chosen to analyze the bifurcation properties and the impact numbers are identified for the periodic response. Consequently, the numerical results verify the effectiveness of the approximation method for analyzing the considered nonlinear system. Furthermore, the bifurcation properties of the system with an uncertain parameter are explored through the high-dimensional deterministic system. It can be found that the excitation frequency can induce period-doubling bifurcation and grazing bifurcation. Increasing the random intensity may result in a diffusion-based trajectory and the impact with the constraint plane, which induces the topological behavior of the non-smooth system to change drastically. It is also found that grazing bifurcation appears in advance with increasing of the random intensity. The stronger impulse force can result in the appearance of the diffusion phenomenon.

Details

Title
Bifurcation Analysis of a Nonlinear Vibro-Impact System with an Uncertain Parameter via OPA Method
Author
Huang, Dongmei; Dang, Hong; Li, Wei; Yang, Guidong; Rajic, Vesna
Pages
509-524
Section
ARTICLE
Publication year
2024
Publication date
2024
Publisher
Tech Science Press
ISSN
1526-1492
e-ISSN
1526-1506
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3200122899
Copyright
© 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.