Content area
Con el tiempo, diversos investigadores han creado modelos matemáticos, estadísticos y predictivos para evaluar el recurso solar. Sin embargo, su implementación en herramientas técnicas limita su utilización por usuarios no técnicos. Además, el procesamiento de datos para estimar la radiación solar suele requerir hardware potente. Este estudio presenta una herramienta basada en Big data que utiliza archivos planos e imágenes de satélite para estimar la radiación solar en Colombia. Se desarrolló un modelo con técnicas de aprendizaje automático y varios lenguajes de programación. Se ejecuta en MapR, una distribución del ecosistema Hadoop con un amplio conjunto de capacidades Big data y emplea la API de PySpark para procesar datos en paralelo en un clúster de computadoras. La herramienta E-Solar implementada en un servidor web fue evaluada por profesionales del sector energético. Se analizó la usabilidad, se verificó la conformidad con estándares de programación recientes y se identificaron perfiles de usuarios interesados. Los datos de radiación solar generados por la herramienta son fundamentales para proyectos solares. Además, la herramienta proporciona apoyo a investigadores y organizaciones; y facilita la toma de decisiones en la implementación de sistemas fotovoltaicos al ofrecer información relevante sobre el comportamiento del recurso solar en Colombia.
