Full text

Turn on search term navigation

© 2025 Yu. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study presents the development and application of an optimized Detection Transformer (DETR) model, known as CD-DETR, for the detection of thoracic diseases from chest X-ray (CXR) images. The CD-DETR model addresses the challenges of detecting minor pathologies in CXRs, particularly in regions with uneven medical resource distribution. In the central and western regions of China, due to a shortage of radiologists, CXRs from township hospitals are concentrated in central hospitals for diagnosis. This requires processing a large number of CXRs in a short period of time to obtain results. The model integrates a multi-scale feature fusion approach, leveraging Efficient Channel Attention (ECA-Net) and Spatial Attention Upsampling (SAU) to enhance feature representation and improve detection accuracy. It also introduces a dedicated Chest Diseases Intersection over Union (CDIoU) loss function to optimize the detection of small targets and reduce class imbalance. Experimental results on the NIH Chest X-ray dataset demonstrate that CD-DETR achieves a precision of 88.3% and recall of 86.6%, outperforming other DETR variants by an average of 5% and CNN-based models like YOLOv7 by 6–8% in these metrics, showing its potential for practical application in medical imaging diagnostics.

Details

Title
An optimized transformer model for efficient detection of thoracic diseases in chest X-rays with multi-scale feature fusion
Author
Yu, Shasha; Zhou, Peng  VIAFID ORCID Logo 
First page
e0323239
Section
Research Article
Publication year
2025
Publication date
May 2025
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3201460143
Copyright
© 2025 Yu. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.