Abstract
Background
Numerous studies have shown that circRNA can act as a miRNA sponge, competitively binding to miRNAs, thereby regulating gene expression and disease progression. Due to the high cost and time-consuming nature of traditional wet lab experiments, analyzing circRNA-miRNA associations is often inefficient and labor-intensive. Although some computational models have been developed to identify these associations, they fail to capture the deep collaborative features between circRNA and miRNA interactions and do not guide the training of feature extraction networks based on these high-order relationships, leading to poor prediction performance.
Results
To address these issues, we innovatively propose a novel deep graph collaboration learning method for circRNA-miRNA interaction, called DGCLCMI. First, it uses word2vec to encode sequences into word embeddings. Next, we present a joint model that combines an improved neural graph collaborative filtering method with a feature extraction network for optimization. Deep interaction information is embedded as informative features within the sequence representations for prediction. Comprehensive experiments on three well-established datasets across seven metrics demonstrate that our algorithm significantly outperforms previous models, achieving an average AUC of 0.960. In addition, a case study reveals that 18 out of 20 predicted unknown CMI data points are accurate.
Conclusions
The DGCLCMI improves circRNA and miRNA feature representation by capturing deep collaborative information, achieving superior performance compared to prior methods. It facilitates the discovery of unknown associations and sheds light on their roles in physiological processes.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer




