It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Plants in arid environments can regulate the generation of specialized metabolites to enhance their adaptability. Roots serve as the first defense line, responding directly to drought situations; however, the knowledge regarding the molecular mechanisms of metabolite changes to drought in maize roots remain largely limited. Here, we employed RNA-seq and UPLC-MS/MS methods to examine changes in the root metabolome and transcriptome of maize seedlings subjected to moderate drought (MD) and severe drought (SD) conditions by controlling water supply.
Results
Compared to the untreated control group, 460 differentially accumulated metabolites were detected in roots under MD and SD conditions. Among these metabolites, lignin compounds emerged as the primary response to drought. Most lignin metabolites, including caffealdehyde, sinapyl alcohol, coniferaldehyde, p-coumaryl alcohol, and p-coumaric acid, showed a significant increase under MD but decreased under SD. Transcriptional profiling identified 903 and 5306 differential genes in roots treated with MD and SD, respectively. The majority of these genes were associated with lignin biosynthesis, hormone synthesis and signal transduction, and defense response processes. These metabolites and genes play crucial roles in lignin biosynthesis, antioxidant capacity, hormone balance, and root growth, particularly under MD conditions, which aligns with the results from morpho-physiological studies. Further, a conjoint omics analysis highlighted the significant regulatory roles of hormone-associated genes in lignin formation.
Conclusion
Our results suggest that the co-regulation of the lignin biosynthesis pathway and hormone signals significantly enhances root performance, helping maize maintain growth under MD conditions. This study leads to a better understanding of the regulatory mechanisms involved in maize root adaptation to drought environments.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer