It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Healthcare practitioners require a robust predictive system to accurately diagnose diseases, especially in young children with conditions such as anemia. Delays in diagnosis and treatment can have severe consequences, potentially leading to serious complications and childhood mortality. By leveraging machine learning methods with extensive datasets, valuable and scientifically sound insights can be generated to address pressing health and healthcare-related challenges.
Objectives
The primary objective of this study was to identify the most effective machine-learning algorithm for predicting anemia among under five children in Ethiopia.
Methods
The data utilized in this study were sourced from the 2016 Ethiopian Demographic and Health Survey. Six machine-learning models, comprising a classic logistic regression model along with random forest, decision tree, support vector machine, Naïve Bayes, and K-nearest neighbors, were employed to predict factors influencing anemia in children under five. The predictive capacities of each machine-learning model were evaluated using receiver operating characteristic curves and various measures of model accuracy.
Results
The random forest model demonstrated the highest accuracy among the algorithms tested, achieving an overall accuracy of 81.16%. The accuracy rates for the decision tree, support vector machines, Naïve Bayes, K-nearest neighbors, and classical logistic regression models were 68.40%, 59.94%, 53.06%, 69.96%, and 54.79%, respectively.
Conclusion
In general, the random forest algorithm emerged as the preferred model for predicting anemia in children under five. The model exhibited a specificity of 79.26%, sensitivity of 83.07%, positive predictive value of 80.02%, negative predictive value of 82.40%, and an area under the curve of 81.80%.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer