It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Matching Adjusted Indirect Comparison (MAIC) is a statistical method used to adjust for potential biases when comparing treatment effects between separate data sources, with aggregate data in one arm, and individual patients data in the other. However, acceptance of MAIC in health technology assessment (HTA) is challenging because of the numerous biases that can affect the estimates of treatment effects – especially with small sample sizes, increasing the risk of convergence issues. We suggest statistical approaches to address some of the challenges in supporting evidence from MAICs, applied to a case study.
Methods
The proposed approaches were illustrated with a case study comparing an integrated analysis of three single-arm trials of entrectinib with the French standard of care using the Epidemio-Strategy and Medical Economics (ESME) Lung Cancer Data Platform, in metastatic ROS1-positive Non-Small Cell Lung Cancer (NSCLC) patients. To obtain convergent models with balanced treatment arms, a transparent predefined workflow for variable selection in the propensity score model, with multiple imputation of missing data, was used. To assess robustness, multiple sensitivity analyses were conducted, including Quantitative Bias Analyses (QBA) for unmeasured confounders (E-value, bias plot), and for missing at random assumption (tipping-point analysis).
Results
The proposed workflow was successful in generating satisfactory models for all sub-populations, that is, without convergence problems and with effectively balanced key covariates between treatment arms. It also gave an indication of the number of models tested. Sensitivity analyses confirmed the robustness of the results, including to unmeasured confounders. The QBA performed on the missing data allowed to exclude the potential impact of the missing data on the estimate of comparative effectiveness, even though approximately half of the ECOG Performance Status data were missing.
Conclusions
To the best of our knowledge, we present the first in-depth application of QBA in the context of MAIC. Despite the real-world data limitations, with this MAIC, we show that it is possible to confirm the robustness of the results by using appropriate statistical methods.
Trial registration
NA.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer