Content area

Abstract

The bin-packing problem is a strongly NP-Hard problem with extensive research. It involves the task of arranging a set of items into a finite number of bins and trying to optimize against some sort of heuristic, usually involving maximizing the number of items placed or minimizing the amount of empty space. The online case involves placing items without information on the upcoming sequence of items. It has significant applications in warehouse management, e-commerce logistics, and cloud computing. In this paper, we explore an image-based approach using deep reinforcement learning to teach a model to place geometric items efficiently in the 3D case. Image based techniques have the benefit of not requiring precise measurements of the bin state or object being placed, and can also represent non-uniform shapes easier. We leverage a Double Deep Q Learning network as our deep reinforcement learning framework to teach a model to place an item given an image of the bin state as well as the item to place. We use a reward structure defined in a manner to encourage compactness and clustering of the items, as well as discouraging overlapping / out of bounds invalid moves. The results show that we outperform the baseline heuristics and compete with state-of-the-art methods for 3D online bin packing when using small bin dimensions.

Details

1010268
Business indexing term
Title
Online 3D Bin Packing An Image-Based Deep Reinforcement Learning Approach
Number of pages
71
Publication year
2025
Degree date
2025
School code
0057
Source
MAI 86/11(E), Masters Abstracts International
ISBN
9798314871829
Advisor
University/institution
The Cooper Union for the Advancement of Science and Art
Department
Electrical Engineering
University location
United States -- New York
Degree
M.E.
Source type
Dissertation or Thesis
Language
English
Document type
Dissertation/Thesis
Dissertation/thesis number
32002067
ProQuest document ID
3201895509
Document URL
https://www.proquest.com/dissertations-theses/strong-online-3d-bin-packing-em-image-based-deep/docview/3201895509/se-2?accountid=208611
Copyright
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Database
ProQuest One Academic