Abstract

Distributed computing frameworks are the fundamental component of distributed computing systems. They provide an essential way to support the efficient processing of big data on clusters or cloud. The size of big data increases at a pace that is faster than the increase in the big data processing capacity of clusters. Thus, distributed computing frameworks based on the MapReduce computing model are not adequate to support big data analysis tasks which often require running complex analytical algorithms on extremely big data sets in terabytes. In performing such tasks, these frameworks face three challenges: computational inefficiency due to high I/O and communication costs, non-scalability to big data due to memory limit, and limited analytical algorithms because many serial algorithms cannot be implemented in the MapReduce programming model. New distributed computing frameworks need to be developed to conquer these challenges. In this paper, we review MapReduce-type distributed computing frameworks that are currently used in handling big data and discuss their problems when conducting big data analysis. In addition, we present a non-MapReduce distributed computing framework that has the potential to overcome big data analysis challenges.

Details

Title
Survey of Distributed Computing Frameworks for Supporting Big Data Analysis
Author
Sun, Xudong; He, Yulin; Wu, Dingming; Huang, Joshua Zhexue
Pages
154-169
Publication year
2023
Publication date
Jun 2023
Publisher
Tsinghua University Press
ISSN
20960654
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3202836829
Copyright
© 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.