Content area

Abstract

This study presents an optimization for a distributed machine learning framework to achieve credit card fraud detection scalability. Due to the growth in fraudulent activities, this research implements the PySpark-based processing of large-scale transaction datasets, integrating advanced machine learning models: Logistic Regression, Decision Trees, Random Forests, XGBoost, and CatBoost. These have been evaluated in terms of scalability, accuracy, and handling imbalanced datasets. Key findings: Among the most promising models for complex and imbalanced data, XGBoost and CatBoost promise close-to-ideal accuracy rates in fraudulent transaction detection. PySpark will be instrumental in scaling these systems to enable them to perform distributed processing, real-time analysis, and adaptive learning. This study further discusses challenges like overfitting, data access, and real-time implementation with potential solutions such as ensemble methods, intelligent sampling, and graph-based approaches. Future directions are underlined by deploying these frameworks in live transaction environments, leveraging continuous learning mechanisms, and integrating advanced anomaly detection techniques to handle evolving fraud patterns. The present research demonstrates the importance of distributed machine learning frameworks for developing robust, scalable, and efficient fraud detection systems, considering their significant impact on financial security and the overall financial ecosystem.

Details

1009240
Title
Big Data-Driven Distributed Machine Learning for Scalable Credit Card Fraud Detection Using PySpark, XGBoost, and CatBoost
Publication title
Volume
14
Issue
9
First page
1754
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-04-25
Milestone dates
2025-03-18 (Received); 2025-04-22 (Accepted)
Publication history
 
 
   First posting date
25 Apr 2025
ProQuest document ID
3203194285
Document URL
https://www.proquest.com/scholarly-journals/big-data-driven-distributed-machine-learning/docview/3203194285/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-08-28
Database
ProQuest One Academic