Content area

Abstract

This paper presents an improved coupled radial basis function (ICRBF) approach for solving inverse steady-state heat conduction problems. The proposed method combines infinitely smooth Gaussian radial basis functions with a real-valued mth-order conical spline, where m serves as a coupling index. Unlike the original coupled RBF approach, which relied on multiquadric RBFs paired with a fixed fifth-order spline or later integer-order extensions, our real-order spline generalization enhances accuracy and simplifies the tuning of m. We present a particle swarm optimization approach to optimize the coupling index m. This work represents the first application of the CRBF framework to inverse steady-state heat conduction problems. The ICRBF methodology addresses three key limitations of traditional RBF frameworks: (1) it resolves the persistent issue of shape parameter selection in global RBF methods; (2) it inherently produces well-posed linear systems that can be solved directly, avoiding the need for the regularization typically required in inverse problems; and (3) it delivers superior accuracy compared to existing approaches. Extensive numerical experiments on benchmark problems demonstrate that the proposed method achieves high accuracy and robust numerical stability in solving steady-state heat conduction Cauchy inverse problems, even under significant noise contamination.

Details

1009240
Title
Direct Solution of Inverse Steady-State Heat Transfer Problems by Improved Coupled Radial Basis Function Collocation Method
Publication title
Volume
13
Issue
9
First page
1423
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-04-26
Milestone dates
2025-03-19 (Received); 2025-04-24 (Accepted)
Publication history
 
 
   First posting date
26 Apr 2025
ProQuest document ID
3203211654
Document URL
https://www.proquest.com/scholarly-journals/direct-solution-inverse-steady-state-heat/docview/3203211654/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-05-13
Database
ProQuest One Academic