Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

As a typical and widely used passive jamming method, chaff clouds have a strong interference effect on radar that remains a significant challenge effectively to counteract. It is exceedingly necessary to improve the anti-chaff jamming ability of radars. In this paper, we address this challenge by proposing an effective residual attention network named RA-Net. Specifically, we introduce an attention mechanism that enables the network to focus on the most informative and stable hierarchical features of the high-resolution range profile (HRRP) data, significantly improving the model’s feature extraction capability and overall performance. In addition, we address the limitation of insufficient measured chaff cloud echo data by establishing a remarkably rich and diverse data set of chaff cloud HRRP data through extensive field experiments. This dataset serves as a valuable resource and a critical foundation for advancing HRRP recognition research in this domain. Experimental results on measured HRRP data demonstrate that RA-Net achieves superior recognition accuracy of 97.10%, outperforming traditional methods, and also exhibits outstanding generalization capability. These results establish RA-Net as a new benchmark for chaff cloud HRRP recognition.

Details

Title
Anti-Chaff Jamming Method of Radar Based on Real Dataset and Residual Attention Model
Author
Li Shuolei  VIAFID ORCID Logo  ; Liu, Bin; Zhou, Lin; Liu, Jingping  VIAFID ORCID Logo 
First page
2663
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3203224759
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.