Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Aiming at the efficiency bottleneck and error risk caused by the over-reliance on manual experience in traditional assembly sequence planning, the urgent demand for deep reuse of multi-source knowledge in complex products, and the growing demand for resource saving and sustainable development, this study focuses on the core problem of the lack of empirical knowledge modeling and reasoning mechanism in the assembly process of complex products, and proposes a three-phase assembly sequence intelligent planning method that integrates deep learning and ontology theory. Method: First, we propose an instance segmentation model based on the improved Mask R-CNN architecture, incorporate the ResNet50 pre-training strategy to enhance the generalization ability of the model, reconstruct the Mask branch, and add the attention mechanism to achieve high-precision recognition and extraction of geometric features of the assembly parts. Secondly, a multi-level assembly ontology semantic model is constructed based on the ontology theory, which realizes the structured expression of knowledge from three dimensions: product structure level (product–assembly–part), physical attributes (weight/precision/dimension), and assembly process (number of fits/direction of assembly), and builds a reasoning system with six assembly rules in combination with the SWRL language, which covers the core elements of geometric constraints, process priority, and so on. Finally, experiments are carried out with the example gearbox as the validation object, and the results show that the assembly sequence generated by the method meets the requirements of the process specification, which verifies the validity of the technology path. By constructing a closed-loop technology path of “visual perception–knowledge reasoning–sequence generation”, this study effectively overcomes the subjective bias of manual planning, integrates multi-source knowledge to improve the reuse rate of knowledge, and provides a solution of both theoretical value and engineering feasibility for the intelligent assembly of complex electromechanical products, which reduces the R&D cost and contributes to the sustainable development.

Details

Title
Combining Instance Segmentation and Ontology for Assembly Sequence Planning Towards Complex Products
Author
Shi, Xiaolin  VIAFID ORCID Logo  ; Wu, Xu; Zhang, Han; Xu, Xiaolong
First page
3958
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3203260717
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.