Content area

Abstract

The growing concerns over fossil fuel dependency, environmental impacts, and escalating energy expenses highlight the critical importance of enhancing energy system efficiency. This study presents a dual-phase optimization approach for improving grid-connected microgrid (μG) operations, focusing on Sodium-Sulfur (NaS) and Sodium Nickel Chloride (Na-NiCl₂) battery storage systems. The problem was structured as a mixed-integer nonlinear programming (MINLP) model and resolved using GAMS software with its embedded open-source BONMIN solver. The initial phase establishes optimal battery storage system (BSS) allocation methods to optimize renewable energy source (RES) self-consumption (SC), increase hosting capacity (HC), and minimize operational expenses. Building on these results, the second phase develops optimal microgrid operational strategies to reduce total operating costs further. The research evaluates five scenarios with incrementally increasing the number of BSSs, ranging from one to five units. Through this systematic analysis, the work demonstrates that both the quantity and type of BSS units significantly impact μG operating costs. The most efficient configuration emerged in Case 3, where three Na-NiCl₂ BSS units achieved a 32.35% reduction in operating costs. Additionally, the integration of BSS demonstrated notable improvements in both HC and SC rates.

Details

1009240
Business indexing term
Title
Improving microgrid hosting capacity: A two-stage BONMIN solver-based framework for battery storage allocation and operational energy management strategy
Author
Publication title
PLoS One; San Francisco
Volume
20
Issue
5
First page
e0323525
Publication year
2025
Publication date
May 2025
Section
Research Article
Publisher
Public Library of Science
Place of publication
San Francisco
Country of publication
United States
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Milestone dates
2025-02-23 (Received); 2025-04-10 (Accepted); 2025-05-16 (Published)
ProQuest document ID
3204961960
Document URL
https://www.proquest.com/scholarly-journals/improving-microgrid-hosting-capacity-two-stage/docview/3204961960/se-2?accountid=208611
Copyright
© 2025 Ziad M. Ali. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-05-17
Database
2 databases
  • Coronavirus Research Database
  • ProQuest One Academic