Content area

Abstract

3D object detection based solely on image data presents a significant challenge in computer vision, primarily due to the need to integrate geometric perception processes derived from visual inputs. The key to overcoming this challenge lies in effectively capturing the geometric relationships across multiple viewpoints, thereby establishing strong geometric priors. Current methods commonly back-project voxels onto images to align voxel-pixel features, yet during this process, pixel features are insufficiently involved in learning, leading to a decrease in geometric perception accuracy and, consequently, impacting detection performance. To address this limitation, we propose a novel network framework called ImVoxelGNet. This framework first integrates features projected onto pixels via a expansion operation, compensating for the pixel information inadequately utilized in traditional back-projection methods, thus enabling more precise learning of spatial geometric features. Additionally, we design an implicit geometric perception structure that further refines the spatial geometric features obtained after integrating image features, learning the occupancy relationships in spatial voxels and updating them within the spatial features. Finally, we generate the final prediction results by combining a detection head with 3D convolutions. Evaluation on the ScanNetV2 multi-view 3D object detection dataset demonstrates that ImVoxelGNet achieves a performance improvement of up to 2.2% in mean average precision (mAP). This improvement effectively demonstrates the efficacy of our method in significantly enhancing 3D object detection performance through improved geometric perception and comprehensive scene understanding. Codes and data are released in https://github.com/xug-coder/ImVoxelGNet.

Details

1009240
Title
ImVoxelGNet: Image to voxels geometry-aware projection for multi-view RGB-based 3D object detection
Publication title
PLoS One; San Francisco
Volume
20
Issue
5
First page
e0320589
Publication year
2025
Publication date
May 2025
Section
Research Article
Publisher
Public Library of Science
Place of publication
San Francisco
Country of publication
United States
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Milestone dates
2024-11-30 (Received); 2025-02-20 (Accepted); 2025-05-19 (Published)
ProQuest document ID
3205743834
Document URL
https://www.proquest.com/scholarly-journals/imvoxelgnet-image-voxels-geometry-aware/docview/3205743834/se-2?accountid=208611
Copyright
© 2025 Xu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-05-23
Database
ProQuest One Academic