Content area

Abstract

In the Internet of Things (IoT) era, energy efficiency in Wireless Sensor Networks (WSNs) is of utmost importance given the finite power resources of sensor nodes. An efficient Cluster Head (CH) selection greatly influences network performance and lifetime. This paper suggests a novel energy-efficient clustering protocol that hybridizes Whale Optimization Algorithm (WOA) and Artificial Ecosystem Optimization (AEO), called WOAAEO. It utilizes the exploration capabilities of AEO and the exploitation strengths of WOA in optimizing CH selection and balancing energy consumption and network efficiency. The proposed method is structured into two phases: CH selection using the WOAAEO algorithm and cluster formation based on Euclidean distance. The new method was modeled in MATLAB and compared with current algorithms. Results show that WOAAEO increases the network lifetime by a maximum of 24%, enhances the packet delivery rate by a maximum of 21%, and reduces energy consumption by a maximum of 35% compared to related algorithms. The results show that WOAAEO can be a suitable solution to help resolve energy-saving issues in WSNs and can thus be applied to IoT without any issues.

Details

1009240
Business indexing term
Title
WOAAEO: A Hybrid Whale Optimization and Artificial Ecosystem Optimization Algorithm for Energy-Efficient Clustering in Internet of Things-Enabled Wireless Sensor Networks
Author
Volume
16
Issue
4
Publication year
2025
Publication date
2025
Publisher
Science and Information (SAI) Organization Limited
Place of publication
West Yorkshire
Country of publication
United Kingdom
ISSN
2158107X
e-ISSN
21565570
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
ProQuest document ID
3206239761
Document URL
https://www.proquest.com/scholarly-journals/woaaeo-hybrid-whale-optimization-artificial/docview/3206239761/se-2?accountid=208611
Copyright
© 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-05-22
Database
ProQuest One Academic