Content area

Abstract

The basis for current digital infrastructure is cloud computing, which allows for scalable, on-demand computational resource access. Data center power consumption, however, has skyrocketed because of demand increases, raising operating costs and their footprint. Traditional workload scheduling algorithms often assign performance and cost priority over energy efficiency. This paper proposes a workload scheduling method utilizing deep reinforcement learning (DRL) that adjusts dynamically according to present cloud situations to ensure optimal energy efficiency without compromising performance. The proposed method utilizes Deep Q-Networks (DQN) to perform feature engineering to identify key workload parameters such as execution time, CPU and memory consumption, and subsequently schedules tasks smartly based on these results. Based on evaluation output, the model brings down the latency to 15 ms and throughput up to 500 tasks/sec with 92% efficiency in load balancing, 95% resource usage, and 97% QoS. The proposed approach yields improved performance in terms of key parameters compared to conventional approaches such as Round Robin, FCFS, and heuristic methods. These findings show how reinforcement learning can significantly enhance the scalability, reliability, and sustainability of cloud environments. Future work will focus on enhancing fault tolerance, incorporating federated learning for decentralized optimization, and testing the model on real-world multi-cloud infrastructures.

Details

1009240
Business indexing term
Title
Energy-Efficient Cloud Computing Through Reinforcement Learning-Based Workload Scheduling
Author
Volume
16
Issue
4
Publication year
2025
Publication date
2025
Publisher
Science and Information (SAI) Organization Limited
Place of publication
West Yorkshire
Country of publication
United Kingdom
ISSN
2158107X
e-ISSN
21565570
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
ProQuest document ID
3206239795
Document URL
https://www.proquest.com/scholarly-journals/energy-efficient-cloud-computing-through/docview/3206239795/se-2?accountid=208611
Copyright
© 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-12-10
Database
ProQuest One Academic