Content area

Abstract

The current research uses the Grünwald–Letnikov (GL) fractional differential mask to improve satellite and medical images. One of the important image enhancement methods in digital image processing is texture enhancement. A fractional differential-based two-dimensional discrete gradient operator is based on the definition of Grünwald–Letnikov (GL) interpretation of fractional calculus, which is extended from a one-dimensional operator through the analysis of its spectrum to improve the image texture. Which then extracts more subtle texture information, and gets around the lack of a classical gradient operator. Based on the GL fractional differential, an approximate two-dimensional isotropic gradient operator mask was created using the GL fractional derivative, the technique generates and pixel-sized masks that preserve the correlation between neighboring pixels. The strength of the mask, which was a variable and non-linear filter, could be changed by varying the intensity factor to enhance the image. Experimental results show that the operator may emphasize the texture and obtain more complex information. Compared to the conventional classical methods, the suggested way has an excellent promotional effect on texture enhancement compared to the previous method on grayscale images.

Details

1009240
Title
Single channel medical images enhancement using fractional derivatives
Publication title
PLoS One; San Francisco
Volume
20
Issue
5
First page
e0319990
Publication year
2025
Publication date
May 2025
Section
Research Article
Publisher
Public Library of Science
Place of publication
San Francisco
Country of publication
United States
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Milestone dates
2024-10-03 (Received); 2025-02-11 (Accepted); 2025-05-21 (Published)
ProQuest document ID
3206475045
Document URL
https://www.proquest.com/scholarly-journals/single-channel-medical-images-enhancement-using/docview/3206475045/se-2?accountid=208611
Copyright
© 2025 Singh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-05-22
Database
ProQuest One Academic