Content area

Abstract

Effectively identifying factors related to user satisfaction is crucial for evaluating customer experience. This study proposes a two-phase analytical framework that combines natural language processing techniques with hierarchical decision-making methods. In Phase 1, an ERNIE-LSTM-based emotion model (ELEM) is used to detect fake reviews from 4016 smartphone evaluations collected from JD.com (accuracy: 84.77%, recall: 84.86%, F1 score: 84.81%). The filtered genuine reviews are then analyzed using Biterm Topic Modeling (BTM) to extract key satisfaction-related topics, which are weighted based on sentiment scores and organized into a multi-criteria evaluation matrix through the Analytic Hierarchy Process (AHP). These topics are further clustered into five major factors: user-centered design (70.8%), core performance (10.0%), imaging features (8.6%), promotional incentives (7.8%), and industrial design (2.8%). This framework is applied to a comparative analysis of two smartphone stores, revealing that Huawei Mate 60 Pro emphasizes performance, while Redmi Note 11 5G focuses on imaging capabilities. Further clustering of user reviews identifies six distinct user groups, all prioritizing user-centered design and core performance, but showing differences in other preferences. In Phase 2, a comparison of word frequencies between product reviews and community Q and A content highlights hidden user concerns often missed by traditional single-source sentiment analysis, such as screen calibration and pixel density. These findings provide insights into how product design influences satisfaction and offer practical guidance for improving product development and marketing strategies.

Details

1009240
Title
Quantifying Post-Purchase Service Satisfaction: A Topic–Emotion Fusion Approach with Smartphone Data
Author
Publication title
Volume
9
Issue
5
First page
125
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
e-ISSN
25042289
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-05-08
Milestone dates
2025-04-01 (Received); 2025-05-05 (Accepted)
Publication history
 
 
   First posting date
08 May 2025
ProQuest document ID
3211858310
Document URL
https://www.proquest.com/scholarly-journals/quantifying-post-purchase-service-satisfaction/docview/3211858310/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-05-27
Database
2 databases
  • Coronavirus Research Database
  • ProQuest One Academic